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1 Introduction

Rising healthcare expenditures have prompted spending reforms such as Medicare’s prospective

payment system, which ties reimbursements to a fixed amount per service rather than to a

provider’s actual costs. While these reforms aim to limit wasteful healthcare expenses, they

potentially lead to an unintended consequence: providers may reduce their quality of care to

minimize costs and treat more patients. Determining whether providers do, in fact, trade off

quantity and quality faces two challenges, however. First, measuring inputs, outputs, and quality

in health care is often not straightforward. Second, providers’ endogenous choices with respect

to inputs and quality may bias estimates of productivity. To overcome these challenges, we

develop a novel method to estimate a healthcare provision function that incorporates both a

quality-quantity tradeoff and unobserved firm productivity. We then apply this technique to a

tractable yet representative healthcare setting well-suited for our approach, outpatient dialysis

treatments. From our analysis, we find that providers reduce costs by sacrificing quality, as

allowing a one standard deviation increase in a center’s infection rate decreases its costs by the

equivalent of three full-time employees.

We focus specifically on dialysis treatments — a process that cleans the blood of patients

with end-stage renal disease (ESRD), or kidney failure — for two primary reasons. First, pay-

ments to dialysis facilities comprise a substantial portion of Medicare’s expenditures each year,

making it an important area for policy analysis in its own right. Second, several features of the

dialysis industry make it well suited for a study of quality provision in health care. For instance,

dialysis is predominately conducted in standalone facilities, which creates a well-defined market

for our analysis. In addition, payments for treatment are largely uniform due to Medicare’s

prospective payment system and do not depend on quality, making it possible to isolate the

effects of quality provision from price discrimination. Moreover, dialysis treatments follow a

straightforward process related to stations and staff, which allows us to closely approximate a

facility’s production function. Facilities also choose input levels (i.e., staffing) and have observ-

able differences in production (i.e., patient loads), which allows us to identify the relationship

between inputs and outputs. Finally, facilities have observable differences in outcomes that

relate directly to the quality of care they provide (e.g., infection and death rates), which allows

us to connect a firm’s productivity to its treatment quality, the primary aim of our research.

To uncover the cost of providing higher-quality care, we build on the structural methods
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for estimating firm-level production functions first proposed by Olley & Pakes (1996), and later

extended by Levinsohn & Petrin (2003), Ackerberg et al. (2006), Gandhi et al. (2009), and

others. Conceptually, we adapt these methods to incorporate a “quality-choice” stage that

comes after a firm’s choices of labor and capital. That is, after acquiring capital and training

workers, a manager observes his center’s expected level of productivity and chooses the level

of quality to provide by, for example, stipulating guidelines for the length of treatment, the

cleanliness of equipment, and the degree of oversight. Because we do not directly observe firms’

quality choices, however, we use observable measures of patient outcomes as a proxy for what

those choices must have been — if high-quality care is more likely to result in better health

outcomes, those outcomes are valid proxies for quality choices. And because we have multiple

measures of health outcomes (in our case, a center’s septic infection and mortality rate), we can

use an instrumental variable approach to recover the impact of quality choices on output.

We use our results to investigate why dialysis centers provide different levels of treatment

quality. Due to Medicare’s prospective payment system, dialysis centers have an incentive to

minimize the costs of treating patients, which may include providing low-quality care. Counter-

acting this incentive, however, are plausible motivations for providing high-quality treatments:

centers must report quality statistics to Medicare which are then made public, and face inter-

mittent inspections by state regulators (Ramanarayanan & Snyder 2011). In addition, patients

have a choice over their dialysis providers, potentially leading centers to compete for patients

by providing higher-quality care (Dai 2012). Finally, non-profit centers may have objectives for

providing high-quality care unrelated to maximizing profits (Sloan 2000).

From our analysis, we find a substantial quality-quantity tradeoff for dialysis treatments:

a center can increase its patient load by 1 percent by allowing a 0.8 percentage point higher

septic infection rate, holding input levels and productivity constant. In addition, our approach

allows us to recover estimates of total factor productivity for each firm that properly account

for endogenous quality choices. We find substantial productivity dispersion in the industry that

is not explained by differences in treatment quality. Finally, we investigate the determinants

of quality in the industry and find that for-profit dialysis centers provide significantly worse

care, with an infection rate 1.5 percentage points (roughly 12 percent) higher than their non-

profit counterparts. At the same time, local competition does not appear to improve treatment

quality. Overall, our results provide evidence that profit-based incentives to reduce costs in

dialysis treatments may lead to lower-quality care, and that competition has a limited impact
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on quality.

In addition to providing relevant policy analysis, this paper also contributes to the growing

literature in empirical industrial organization on the estimation of production functions. These

methods have a long history in economics, with many well-known econometric issues related

to selection and simultaneity bias receiving considerable attention.1 In light of this, recent

work has developed structural techniques that use firms’ observed input decisions to control

for unobserved productivity shocks and overcome endogeneity problems.2 We extend these

methods to incorporate observable measures of output quality into the production function,

which is necessary for healthcare applications. To our knowledge, we are the first to apply these

methods to a healthcare setting with the goal of measuring a quality-quantity tradeoff.3

Firms’ quality choices require direct consideration within health care because failing to con-

trol for differences in treatment quality may bias estimates of productivity. As an example,

consider the econometrician who observes factory A producing twice as many widgets as fac-

tory B using exactly the same measurable inputs, such as labor hours. Accounting measures

of productivity, such as simple labor-to-output ratios, would suggest that factory A is twice as

productive. If widgets from factory A fail at a higher rate because its employees devote less

attention to quality control, however, then the true difference in productivity is less than the

factor of two suggested by a simple quantity measure.

Previous work assumes away differences in output quality by arguing that higher-quality

products (i.e., those with fewer defects) command higher prices, which will then be captured

by revenue-denominated output measures. The mapping of price to quality has many short-

comings, however, as prices reflect more than just quality (Griliches & Mairesse 1995). As

noted in De Loecker (2012), for instance, exchange rates and market power influence prices in

ways that may obscure quality differences. To address this concern, De Loecker uses quantity-

denominated measures for output rather than revenue-denominated measures deflated by a price

index, leaving aside issues of quality dispersion.4 While indirect controls for quality are suitable

for some settings, output quality is of first-order importance in many applications and estimation

techniques that do not properly incorporate quality variation across firms result in misleading

1See Syverson (2011) for a recent review.
2See, for example, Olley & Pakes (1996), Ackerberg et al. (2006), and Levinsohn & Petrin (2003).
3Romley & Goldman (2011) consider quality choices among hospitals using a revealed-preference approach rather

than outcome-based quality measures. Lee et al. (2012) use a structural approach to measure the impact of healthcare
IT on hospital productivity, but do not consider output quality.

4A separate line of research, such as Fox & Smeets (2011), uses the quality of inputs (e.g., the education levels of
employees) to explain productivity dispersion.
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inference. Moreover, standard techniques to control for quality — such as price variation —

may not adequately resolve the issue, particularly in healthcare settings such as dialysis where

prices are set by Medicare rather than individual facilities and are unrelated to the quality of

care provided (in fact, they are set before the quality of care is even chosen). These features

thus serves as the motivation for our approach.

The remainder of our paper continues in the following section with a description of the

outpatient dialysis industry and our data sources. Section 3 outlines our methods for estimating

a production function in the presence of an endogenous quality choice. Section 4 presents our

estimation results. Finally, Section 5 concludes with a discussion of our findings’ implications.

2 Empirical Setting and Data Description

The demand for dialysis treatments comes from patients afflicted by end-stage renal disease

(ESRD), a chronic condition characterized by functional kidney failure that results in death

if not treated properly. Patients with ESRD effectively have only two treatment options, a

kidney transplant or dialysis. Because of the long wait-list for transplants, however, nearly

all ESRD patients at some point must undergo dialysis, a process which cleans the blood of

waste and excess fluids. Patients can receive different dialysis modalities, with hemodialysis,

a method that circulates a patient’s blood through a filtering device before returning it to the

body, constituting 90.4 percent of treatments (Center for Medicare and Medicaid Services).

Patients receiving dialysis in the United States primarily do so at free-standing dialysis

facilities, which collectively comprise over 90 percent of the market (USRDS 2010).5 Medicare’s

ESRD program, instituted by an act of Congress in 1973, covers the majority of these patients;

notably, all patients with ESRD become eligible for Medicare coverage, regardless of age, and

the program now encompasses over 400,000 individuals. Today, Medicare spends more than $20

billion a year on dialysis care — about $77,000 per patient annually — which constitutes more

than six percent of all Medicare spending despite affecting fewer than one percent of Medicare

patients (ProPublica 2011). Beginning in 1983, Medicare has paid dialysis providers a fixed,

prospective payment — the “composite rate” — for each outpatient treatment delivered, up to

a maximum of three sessions per week per patient. Initially, the payment rate did not adjust for

quality, length of treatment, dialysis dose, or patient characteristics, though Medicare began to

5Other options for receiving dialysis include hospital emergency rooms and in-home treatments.
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adjust payments based on patient characteristics in 2005.

Dialysis treatments require constant supervision by trained medical professionals, as patients

must remain connected to a dialysis machine for 2-5 hours to filter impurities and remove excess

fluid from their blood. Prior to treatment, staff connect the machine to a patient by inserting

two lines into a vascular access and asses his condition. During treatment, staff must continually

monitor patients to evaluate conditions (e.g., blood pressure) and to treat symptoms that arise

(e.g., hypotension). Following treatment, staff disconnect a patient from the dialysis machine

and assess his condition a final time before discharge. As a result of this hands-on care, the cost

per patient treated necessarily increases with the average duration of treatment. Labor costs,

which consist largely of nurses and technicians’ wages, reflect this, accounting for approximately

70-75 percent of a facility’s total variable costs (Ford & Kaserman 2000).

Centers employ different types of labor, with registered nurses (RNs) constituting the ma-

jority of staff. Technicians, who have less-extensive training than RNs, also treat patients but

can do so with only a high-school diploma and in-house training (though they must eventually

pass a state or national certification test). Notably, centers cannot quickly react to changes in

productivity by hiring more workers due to training and certification requirements. Centers also

must have board-certified physicians as medical directors, but often have no physician on site.

Medicare does not mandate a specific staffing ratio for dialysis centers, although some states do.

Another significant decision for dialysis facilities is the number of stations to utilize. Centers

vary widely in terms of size, ranging from 1 to 80 stations. Based on industry reports, a typical

dialysis station costs $16,000 and has a useful life of approximately seven years (Imerman &

Otto 2004).

In addition to labor and capital decisions, firms also decide how much effort to put towards

providing high-quality care. For example, dialysis sessions require up to one hour of preparation

and cleaning, which can be shortened according to a manager’s discretion and can directly affect

treatment outcomes. Importantly, patients undergoing dialysis face a high risk of septic infection

due to the exposure of their blood during treatment, with the risk depending on the cleanliness

of the dialysis center. The center likely has considerable control over its targeted infection rate,

as health professionals who follow straightforward procedures can effectively drive the infection

rate to zero (Pronovost et al. 2006). The decision to do so, however, comes with the tradeoff of

treating fewer patients.

Because a facility’s payments per treatment do not vary by the duration of treatment under
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Medicare’s prospective payment system, a facility’s profit per treatment decreases as treatment

times — and, hence, labor costs — increase. At the same time, the effectiveness and safety

of dialysis increases with its duration; for instance, longer treatment cycles have been linked

to lower mortality rates (ProPublica 2011). Centers thus face a tradeoff between increasing

treatment quality and decreasing costs.6 And though the costs of providing high-quality care

are relatively clear, the benefits for dialysis centers are less straightforward. First, demand-side

incentives appear weak because dialysis provides life-sustaining functions for patients, making

their demand for treatments inelastic. Second, patients typically have few dialysis centers to

choose from in any given market — the mean market share across the United States is 0.457 —

and, since ESRD immobilizes those affected by it, travel costs limit market choice. Finally, as

discussed above, Medicare’s payment system provides no direct financial incentive for providing

high-quality care.

Firms may, however, still have several possible incentives for delivering high-quality care.

For instance, when a facility does face competition for patients, providing low-quality care may

lead its patients to defect to other facilities that provide relatively better care and have excess

capacity. Moreover, a facility that provides inadequate treatment may face increased regulatory

scrutiny that further drives patients to competitors or results in decertification (the degree of

regulatory scrutiny varies from state to state). Finally, some centers, particularly non-profit

entities, may have motives to provide high-quality care unrelated to profitability.

Data Sources We use several sources of data for our analysis. Our primary dataset comes

from the Centers for Medicare and Medicaid Services which contracts with the University of

Michigan’s Kidney Epidemiology and Cost Center to compile customized reports for each dialysis

facility in the country. In December 2010, ProPublica, a non-profit organization dedicated to

investigative journalism, obtained these reports under the Freedom of Information Act and

posted them online. We systematically downloaded all individual reports covering 2004 — 2008

and constructed a usable dataset, which to our knowledge is the first time it has been used for

research purposes.7 The data include detailed center-level information on aggregated patient

(e.g., age, gender, co-morbid conditions, etc.) and facility characteristics (e.g., number of stations

6Critics allege that facilities may sacrifice quality of care in pursuit of efficiency, turning over three to four shifts
of patients a day. And while policy makers contend that technicians should not monitor more than four patients at
once, patient-to-staff ratios exceed this guideline in many facilities. At the extreme, inspection reports allege that
some clinics have allowed patients to soil themselves rather than interrupt dialysis (ProPublica 2011).

7Others, such as Ramanarayanan & Snyder (2011), use a more limited form of the same data.
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Table 1: Summary Statistics.

Variable Mean St. Dev.

Patient Years 50.856 31.913
FTE Staff 13.496 7.933
Net Hiring 1.064 0.552
Zero Net Hiring 0.127 0.333
Stations 18.612 7.877
Septic Infection Rate 12.504 6.399
Death Rate Ratio 1.041 0.405

Number of Firms 4,270
Number of Firm-Years 18,295

and nurses, years in operation, etc.).

Table 1 presents selected summary statistics from the data, and several variables deserve

note. First, Medicare analyzes individual patient records and calculates the number of patient-

years each dialysis center serves (e.g., a patient treated at a center for six months is accounted

for as one half of a patient-year). We use this variable as our measure of output, as it provides

an accurate record of dialysis provision that accounts for partial years of service due to death,

transfers, transplants, newly diagnosed patients, and so forth. We also use the number of full-

time equivalent (a weighted mix of full-time and part-time) employees at each center and the

number of dialysis stations as our measures of labor and capital inputs. The average number

of dialysis stations used by a center is 18, making the purchase of a new machine a significant

investment; reflecting this, firms have zero net investment for 90 percent of the center-year

observations in the data. In terms of hiring, centers, on average, increase their staff by the

equivalent of one full-time employee each year, while 12.7 percent of centers have no net change

in employment in a given year.

We use a center’s hospitalization rate from septic (blood) infections as our primary measure

of quality, which averages 12.5 percent per year, with a standard deviation of over 6 percent. In

addition to the septic infection rate, we use the ratio of deaths to expected deaths as an alterna-

tive measure of quality.8 Importantly, we can also control for aggregate patient characteristics

at each center which influence productivity and quality, which we discuss at length in Section

3.3.

The competitive environment faced by dialysis centers is highly variable, as shown in Table 2.

8The center-level expected death rate is calculated by Medicare using individual patient characteristics.
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Table 2: Distribution of Competitors in Health Service Areas.

Num Comp. N Freq. Cum.

0 4,789 0.2618 0.2618
1 3,223 0.1762 0.4379
2 1,828 0.0999 0.5379
3+ 8,455 0.4621 1.0000

Following the healthcare literature, we use hospital service areas (HSA) as our market boundaries

for dialysis centers. While roughly 20 percent of dialysis centers are monopolies within their

HSA, the average number of centers in an area is 8.1; in addition, the mean patient-weighted

market share across centers within an HSA is 0.45.

3 Measuring the Quality-Quantity Tradeoff in Dialysis

To measure the relationship between productivity and treatment quality, we propose and esti-

mate a structural model of dialysis provision. In doing so, we account for both the standard

endogeneity problems that arise when estimating production functions and the additional prob-

lem introduced by a firm’s endogenous choice of treatment quality. The complication related to

endogenous quality decisions stems from the unobserved (to the econometrician) choice made

by firms that receive positive shocks to productivity: they may choose either to treat more pa-

tients, or to treat current patients more intensively. If highly productive firms elect to provide

higher-quality care for their patients, näıve estimates of the quality-quantity tradeoff will be

biased, leading us to underestimate the true cost of quality.

To control for this potential source of bias, we extend the work of Olley & Pakes (1996)

and Ackerberg et al. (2006) by incorporating firms’ endogenous quality targets. Because we

only observe noisy measures of quality in our data, however, we also control for measurement

error in quality choices, proxied for by firm-level hospitalization rates for septic infection in

our application. Specifically, the attenuation bias introduced by measurement error in quality

choices would cause us to underestimate the magnitude of the quality-quantity tradeoff, which

we correct for using an IV approach.
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3.1 The Production Technology

Following the production function literature, we assume that the technology for dialysis treat-

ments follows a Cobb-Douglas form:

Yit = Ait(qit, ωit)K
βk

it L
β`

it , (1)

where Yit is the number of dialysis treatments provided by center i in period t; the capital input,

Kit, is the number of dialysis stations in center i; the labor input, Lit, is the full-time equivalent

workforce at the center; and Ait(qit, ωit) is a Hicks-neutral technology shifter that depends on a

scalar reflecting the effort a center puts towards quality, qit, and a scalar representing the firm’s

total factor productivity, ωit, which the firm observes.

Using a scalar variable to represent productivity is a common restriction in the literature, and

we model a firm’s quality target as a unidimensional variable as well. While clearly restrictive,

this simplification allows us to connect a firm’s quality target to observable outcomes in a direct

manner. By increasing the effort it puts towards quality, the firm incurs additional costs but

improves the likelihood of positive treatment outcomes. For instance, increasing qit leads to a

decrease in the center’s expected infection and death rate in our application. At the same time,

qit does not capture all center-level characteristics that a patient might associate with “quality.”

For example, a center could provide nicer amenities that do not affect health outcomes, such as

providing televisions for patients during dialysis, which are not captured as quality improvements

within our model.

The technology shifter, A(·), has the following functional form,

Ait(qit, ωit) = eα0+αqqit+ωit+εit , (2)

where εit is an unanticipated productivity shock that is uncorrelated with all other variables (it

may also account for measurement error). The parameter αq measures the magnitude of the

quality-quantity tradeoff, and is presumed to be negative. As such, improving quality forces a

center to reduce the number of patients it treats for a given level of inputs.

Taking the logarithm of (1) and letting lower case letters stand for the logarithm of upper
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case letters, we arrive at the linear equation,

yit = α0 + αqqit + βkkit + β``it + ωit + εit. (3)

Equation (3) makes apparent the well-known endogeneity problem associated with estimating

production functions: because ωit is observed by the firm but not the econometrician, it may be

correlated with the firm’s capital and labor choices. Our approach adds an additional endogene-

ity problem, as ωit may also affect the firm’s quality target. As a result, OLS estimates of (3) are

inconsistent. Classical methods of correcting for endogeneity involve applying instruments for

capital, labor, and quality, or assuming productivity is fixed over time (i.e., ωit = ωi) and using a

fixed-effects estimator (Mundalk 1961). In practice, these approaches have had limited success.

While input prices would seem to be appropriate instruments for capital and labor choices, they

often have weak predictive power and can be difficult to obtain. A valid instrument for quality

targets that is uncorrelated with unobserved productivity would be even more challenging to

find. Furthermore, while the fixed-effects assumption is relatively easy to implement, it is quite

strong and would not resolve the endogeneity problems if changes in productivity are responsible

for changes in input (or, in our case, quality) choices.

To address these issues, Olley & Pakes (1996) propose an explicit structural approach to

estimate the production process which uses observed firm decisions as proxies for unobserved

productivity shocks, with the basic ideas behind this method extended further by Levinsohn

& Petrin (2003) and Ackerberg et al. (2006).9 In practice, the detailed timing assumptions

required for the structural approach must be carefully evaluated to determine whether they fit

the industry and data under consideration. As such, we discuss the timing assumptions of our

model and relate them to the dialysis industry in the following subsection.

3.2 The Timing of Dialysis Center Decision Making

In their seminal paper, Olley & Pakes (1996) use capital investment as a proxy for unobserved

productivity under the motivation that firms with greater productivity, ceteris paribus, will

make larger investments. Given this intuition, differences in investments will provide a useful

indication of differences in productivity. While natural for their setting of telecommunications

equipment, this approach is not appropriate for dialysis centers because investment in new

9A second approach to production function estimation comes from the dynamic panel literature (e.g., Blundell &
Bond 2000); Ackerberg et al. (2006) provides a comparison of these approaches.
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stations is too infrequent: investment is zero for over 90 percent of the firm-year observations

in the data. In light of this, we instead use firms’ hiring decisions, which provide a natural

proxy in our setting. Nurses and technicians employed by dialysis centers require training and

credentialing, which introduces costs and time lags to hiring and layoff decisions. Therefore,

we regard labor as a dynamic variable, which allows us to use a firm’s (net) hiring decision

to recover ωit.
10 In contrast to labor choices, a firm can quickly adjust the quality of care it

provides. For example, to improve quality, a manager could advise his center’s staff to take extra

precautions when treating patients, or to reduce quality by placing less emphasis on cleanliness

and more on speed (Pronovost et al. 2006). While a center can dictate these policy changes

more quickly than it can make can make hiring or investment changes, a lag still exists between

quality decisions and actual implementation.

A firm’s manager makes investment, hiring, and quality choices based on his center’s capital

stock, labor productivity, and a vector of other observable characteristics, xit. Note that the

components of xit may affect the firm’s policy function even though they do not affect production

directly, and may include the extent of competition in the market, the firm’s taste for quality

via it’s non-profit status, and other related variables. This leads to the timing assumptions of

our model:

1. In period t − 1, firms observe their productivity, ωi,t−1, and state, xi,t−1; realize output

yi,t−1; and make investment, ii,t−1, and hiring, hi,t−1, decisions.11 Newly hired workers

(and newly invested capital) do not become available until period t, making the transitions

for labor and capital:

ki,t = ki,t−1 + ii,t−1 `i,t = `i,t−1 + hi,t−1.

2. At time t− b, which lies between periods t− 1 and t, the firm discovers its new observable

state, xi,t (for example, it observes whether additional firms will enter between periods

t − 1 and t), and observes its “interim” productivity, ωi,t−b. The firm also chooses its

quality target, qi,t.

3. At time t, the firm observes ωi,t, realizes production, yi,t, and makes its hiring and invest-

ment decisions, ii,t and hi,t.

10Note that this assumption conflicts with OP’s conception of labor representing an immediately flexible input,
though the distinction fits our setting.

11Strictly speaking, the investment decision may be made at or before time t− 1.
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In line with the literature, we assume productivity follows an exogenous Markov process

between periods t− 1, t− b, and t:

E[ωit−b|Iit−1] = E[ωit−b|ωit−1], E[ωit|Iit−b] = E[ωit|ωit−b],

where Iit represents firm i’s information set at time t.

In this setting, unobserved productivity encompasses any factor that allows a center to treat

more patients given its observable characteristics and quality target. For instance, a center’s

patients may follow treatment protocols more closely than others, which then frees the center

either (i) to treat more patients because it devotes less time to dealing with complications that

arise, or (ii) to spend extra time treating existing patients more intensively, which ultimately

improves outcomes but does not appear in raw productivity measures, such as output-to-labor

ratios.

3.3 Estimation

We use the model to estimate the underlying parameters of the production function and recover

each firm’s unobserved productivity in every period. We assume that firms behave optimally

given the information they have at the time of their decision, making the firm’s hiring decision

and quality target functions of its current state. In addition to the production function variables,

we assume that the firm’s state includes a vector of center characteristics, xit. That is, we denote

the firm’s hiring and quality policies as,

hit = h(ωit, kit, `it, xit), qit = q(ωit−b, kit, `it, xit),

where xit is a state variable of other factors that affect firm policies but do not directly enter

the production function.

Estimation proceeds in three steps. First, because we do not observe quality directly, we

must find an appropriate proxy for quality based on center-level outcomes. Second, we specify

the observed policy shifters, xit, which will be included in the firm’s hiring function. Finally, we

adapt the standard two-stage estimation strategy to incorporate an endogenous quality choice

with a noisy proxy.
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3.3.1 Proxy for the Quality Target

Although treatment quality is not observed directly, the data contain information on patient

outcomes that are correlated with it. In particular, we focus on the center’s infection rate as

an indicator of quality. This represents an imperfect measure, however, because variation in

the infection rate may be due to differences in patient characteristics across centers rather than

differences in centers’ quality choices. To account for this, we control for center-level averages

of several patient characteristics that affect infection rates. Specifically, we use the (negative)

residual from a regression of infection rates on patient characteristics as our proxy for patient

quality. This residual represents the variation in infection rates that remains after controlling

for differences in the patient pool, and therefore serves as a proxy for the center’s target for

providing high-quality treatments.

We control for several patient characteristics, with summary statistics displayed in Table 3,

that influence a center’s infection rates beyond its quality decisions. Most notably, we include

controls for patients’ methods of vascular access. Patients receive dialysis through three main

types of vascular access: arteriovenous (AV) fistula, AV graft, and venous catheter. A patient’s

vascular access method influences the likelihood of developing a blood infection, with an AV

fistula being significantly less likely to form clots or become infected. Centers vary in the

proportion of patients with an AV fistula, which ultimately may affect treatment outcomes.

In addition to a patient’s method of vascular access, other characteristics may directly affect

treatment outcomes. Because centers vary in terms of their patients’ characteristics, we also

include controls for patients’ average number of comorbid conditions, average duration of ESRD,

and average hemoglobin levels,12 as well as the patients’ average age and proportion of the

center’s patients who are female.

We use the residual from a regression on septic infection rates as our primary proxy for

quality. To control for measurement error, we then employ a second proxy as an instrument

for quality targets, a center’s actual death rate relative to expectations. Specifically, we use

Medicare’s estimates for each center’s expected death rate which is based on individual pa-

tient characteristics (individual-level characteristics are not released to protect patient privacy).

While Medicare uses the ratio of actual deaths to expected deaths as an indicator of center

quality in its own reports, the death-rate ratio is subject to a large amount of noise and we

do not use it as our primary measure of quality. Instead, we use this ratio as an instrumental

12Low hemoglobin levels are associated with anemia and pose health risks for dialysis patients.
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Table 3: Patient Characteristics Summary Statistics.

Variable Mean St. Dev.

Avg. Patient Age 61.518 4.381
Pct. Female 45.798 8.333
Pct. AV Fistula 43.016 13.477
Avg. Comorbid Conditions 3.026 0.826
Avg. Duration of ESRD 4.089 0.953
Avg. Hemoglobin Level 11.882 0.332

Number of Firm-Years 18,295

variable for quality targets.

3.3.2 Controlling for Policy Shifters

In order to invert the hiring function and recover each firm’s productivity, we must explicitly

control for all factors that affect hiring other than productivity. In our specification, we include

the following sources of variation in x:

For-profit Status Centers differ in their ownership type, with roughly 87.7 percent op-

erating as for-profit entities and the remainder as non-profit. A center’s ownership structure

may affect its polices related to hiring and treatment quality, and we therefore control for this

distinction by including a dummy variable for the center’s for-profit status in xit.

Competition Because demand for dialysis centers is local, the extent of competition a center

faces may affect its hiring and quality choices. For instance, centers in highly competitive

markets may choose to improve quality or increase staff levels to attract patients. We include

the level of competition each center faces in xit in the form of dummy variables for having 0,

1, 2, or 3 or more competitors in an HSA. We assume that entry is exogenous and realized at

the beginning of the period, so the firm observes its competitors when making its quality and

hiring choices.

3.3.3 Two-Step Estimation

Under the assumption that a firm’s hiring policy is monotonically increasing in productivity, we

can invert the hiring function to recover a firm’s productivity as a non-parametric function of
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observables:13

ωit = h−1(hit, kit, `it, xit). (4)

Likewise, firms choose an optimal quality target given their information set at time t− b,

qit = q(ωit−b, kit, `it, xit). (5)

Note that kit and `it have been determined already by virtue of the investment and hiring

decisions at time t− 1, while we assume that the observable state, xit, is revealed to the centers

by the intermediate period t − b. Our timing assumptions imply that the quality policy is not

collinear with the hiring policy due to the innovation in productivity between time t − 1 and

t− b.14 Moreover, we do not place any invertibility assumptions on q(·).

Substituting (4) into (3), we arrive at our first-stage estimating equation,

yit = α0 + αqqit + βkkit + β``it + h−1(hit, kit, `it, xit) + εit (6)

= αqqit + Φ(hit, kit, `it, xit) + εit,

where

Φ(hit, kit, `it, xit) = α0 + βkkit + β``it + h−1(hit, kit, `it, xit). (7)

Due to invertibility requirements, we only have observations of (6) whenever hiring is non-

zero.15 Recall that εit is independent of all the observables in this equation by the assumption

that it is not revealed to the firm when its hiring, investment, or quality decisions are made.

If we had a perfect measure of quality, αq could be consistently estimated from this equation

using a kernel-based partially linear estimator (Robinson 1988). As discussed above, however,

we do not directly observe quality targets, but instead observe only quality-related outcomes

(e.g., infection rates, hospitalization rates, death rates, etc.). Because we observe multiple

noisy measures of quality, we employ one as an instrument to consistently recover αq from a

13There do appear to be some adjustment costs to hiring, as centers hire no workers in roughly 18 percent of
center-years. We drop these observations since the hiring function will not be invertible in this range, in line with
Olley & Pakes (1996).

14Ackerberg et al. (2006) emphasize the importance of this point.
15Because there are likely adjustment costs to hiring, h−1 is not well defined when hiring is zero (multiple produc-

tivity levels may lead to zero net hiring). We follow the productivity literature and drop observations of zero hiring
when estimating the first stage.
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sieve-based estimator using instrumental variables (Chen 2007). In practice, we use the septic

infection residual discussed above as an error-ridden proxy for qit and instrument it with the

ratio of expected to actual deaths.

We recover the remaining parameters in a second stage. Note that, given any β = (βk, β`),

we can compute an estimate of unobserved productivity for each firm-year that has non-zero

hiring,

ω̂it(β) = Φ̂(hit, kit, `it, xit)− βkkit − β``it.

Because ωit follows a Markov process,

ωit = g(ωit−1) + ξit, (8)

where g is a non-parametric function of ωit−1, and ξit is a shock to productivity between time

t − 1 and t that is independent of the center’s time-t information set.16 Thus, for any given

β = (βk, β`), we can estimate g(·) using the estimating equation:17

yit − α̂qqit − βkkit − β``it = g(ω̂it−1(β)) + ηit(β),

which follows from substituting the production function from (3) into the productivity innovation

from (8), where α̂q is the consistent estimator of αq recovered in the first stage. At the true

value of β, η(β) = εit + ξit, and so, by construction, ηit(β) is uncorrelated with the time-t labor

and capital variables. Therefore, β can be consistently estimated using the moment conditions,

E

 ηit(β)kit

ηit(β)`it

 = 0. (9)

We use (9) to estimate β̂ via GMM, which can then be used to recover firm-level productivity

estimates.

Standard errors are calculated using the block bootstrap, which accounts for statistical un-

certainty in recovering the quality proxy, as well as both stages of the estimation process.

16Since we normalize the mean of ωit to be zero, the constant term of g is a consistent estimator of α0.
17We can estimate this equation using each observation that follows a non-zero hiring period. While it might

seem more straightforward to recover g(·) by regressing ω̂it(β) on ω̂it−1(β), this would introduce a selection problem
because we would only be able to use observations where hiring in period t itself was non-zero. We thank David
Rivers for pointing this out to us.
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4 Results

4.1 Production Function Estimates and the Quality-Quantity Tradeoff

In order to compare our structural method to OLS and fixed-effects (FE) procedures, we present

the results from estimates of dialysis centers’ production functions using each technique in

Table 4. For the results relating to the structural model, we use a fifth-order polynomial with

interactions to approximate Φ(·) in the first stage, and a fifth-order polynomial to approximate

g(·) in the second stage.

The first three columns in Table 4 present results from specifications that do not include

the infection rate as a proxy for quality, with the estimates of βk and β` differing substantially

across the three estimation methods. Comparing our structural estimation in Column (III) to

OLS in Column (I) and FE in Column (II) highlights several distinguishing features. First, OLS

does not control for endogenous input choices, biasing the capital coefficient downwards and the

labor coefficient upwards. This bias occurs because OLS relies on cross-sectional variation in

stations to identify the labor and capital coefficients while ignoring the possibility of productivity

differences across firms.

The FE procedure, in contrast, assumes productivity differences across firms remain constant

over time, and estimates the capital and labor coefficients on the basis of year-to-year changes in

center inputs. Using this method, both the capital and labor coefficients fall substantially for two

primary reasons. First, relying on only year-to-year variation makes measurement error in both

capital and labor inputs more of a concern. Because stations and employees remain fairly stable

over time, attenuation bias from measurement error in the changes to hiring and investment

biases these coefficients towards zero.18 A second potential reason for the discrepancy between

the OLS and FE approaches is that capital and labor differences in the cross section may proxy

for unobserved, time-invariant center characteristics (e.g., center size) that the FE specification

captures though the productivity term. That the OLS results indicate the production function

has increasing returns to scale best illustrates this distinction, as we would expect that increasing

the number of stations and staff within a center of constant size to exhibit decreasing returns

to scale.

Finally, the third column presents results from estimates of the model presented in Section

18For example, if a new station was installed in June of 2002, it will first be reported in 2003, but the difference in
the number of patients served in 2002 versus 2003 will underreport the impact of the new station that actually came
online for the second half of 2002.
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Table 4: Production Function Estimates.

Without Quality Choice With Quality Choice
OLS FE Model OLS FE Model

Quality Effort, αq -0.0028 -0.0018 -0.0124
(0.0007) (0.0004) (0.0042)

Capital, βk 0.4628 0.1798 0.5210 0.4607 0.1788 0.5134
(0.0208) (0.0513) (0.0446) (0.0209) (0.0514) (0.0468)

Labor, β` 0.6709 0.1846 0.2527 0.6723 0.1855 0.2453
(0.0149) (0.0118) (0.0304) (0.0149) (0.0119) (0.0319)

3 with the added restriction that αq = 0. This specification employs a Markov process for

productivity and uses both cross-section and time-series variation to identify the parameters,

and utilizes firms’ hiring choices to identify unobserved productivity. These results exhibit

decreasing returns to scale with respect to stations and staff, as expected. In addition, they

indicate that the impact of additional machines is roughly twice that of increasing the number

of staff, which seems natural given the production technology for dialysis procedures. While

increasing the number of employees may allow a firm to treat more patients by speeding up the

transition of a dialysis station from one patient to another, the number of patients being treated

by the center at any given time is necessarily bounded by the number of stations in the center.

We next turn to the primary focus of the paper, estimating the quality-quantity tradeoff for

dialysis centers, αq. The final three columns of Table 4 present results from specifications that

control for treatment quality using OLS, FE, and our structural model. All three specifications

provide evidence of a statistically significant quantity-quality tradeoff. However, the magnitude

of the effect is much larger when using the structural model than with either the OLS or FE

methods. The coefficient of -0.0124 from the structural model indicates that, holding inputs

fixed, a firm that improves its quality enough that its expected infection rate falls by 1 per-

centage point will need to reduce overall patient hours by 1.24 percent, holding inputs fixed.

Alternatively, the center could raise quality by the same amount and maintain the current level

of output by increasing the size of its staff by roughly 5.1 percent. Given that the average

center employs approximately 11 full-time equivalent nurses, this roughly equates to hiring one

additional part-time worker. To lower its expected infection rate by a full standard deviation

(6.3 percentage points) would cost the equivalent of roughly three full-time workers.

The smaller impact of quality on output in the OLS and FE specifications likely stems

18



Table 5: Robustness Checks.

I II II IV

Quality Effort, αq -0.0124 -0.0106 -0.0101 -0.0121
(0.0042) (0.0036) (0.0042) (0.0009)

Capital, βk 0.5134 0.5077 0.4381 0.5136
(0.0468) (0.0474) (0.0553) (0.0466)

Labor, β` 0.2453 0.2448 0.1989 0.2455
(0.0319) (0.0313) (0.0169) (0.0318)

Control for Patient Characteristics YES NO YES YES
Control for Market Characteristics YES YES NO YES
Instrument for Quality YES YES YES NO

from endogeneity bias. We would expect, and in fact verify below in Table 8, that quality

provision is positively associated with productivity. Since the OLS specification does not control

for differences in productivity, we would expect its estimate of αq to be biased upward (i.e.,

less negative). While the FE approach controls for time-invariant productivity levels, if firms’

changes in quality targets are positively correlated with changes in their productivity, the FE

estimate of αq will also be biased upwards. This effect, coupled with the effects of attenuation

bias already discussed above, bias the estimates of the quality-quantity tradeoff towards zero.

In Table 5, we consider several robustness checks of the baseline results, which are repeated

in the first column. The second column drops controls for patient characteristics and instead

simply uses the infection rate itself as a proxy for quality targets. The third column drops

the center characteristics of for-profit status and competition from the hiring function. Finally,

the fourth column does not instrument for the quality proxy but instead simply uses OLS to

estimate the first stage. In all cases, the effect of quality declines slightly, though the finding of

a significant quality-quantity tradeoff remains robust to various model specifications.

4.2 Productivity Dispersion, Growth, and Persistance

Having estimated the firm-level production function, we are able to recover center-year (log)

productivity from

ω̂it = yit − α̂0 − α̂qqit − β̂kkit − β̂``it.

This allows us to analyze the dispersion, growth, and persistence of productivity within the

dialysis industry. Moreover, we are able to estimate the importance of productivity for firms’
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quality decisions.

To asses the extent of productivity dispersion, we first calculate the proportion of the variance

in output that is explained by the production function outside of productivity differences:

R2 = 1− V (ω̂it)

V (yit)
.

Our results indicate that the amount of productivity dispersion in the dialysis industry is sub-

stantial, with R2 = 0.489, meaning that about half of the variation in output is attributable to

productivity differences across firms, not input or quality differences. For a basis of comparison,

Fox & Smeets (2011) report R2 statistics for service industries ranging from 0.438 (Accounting)

to 0.739 (Computer Activities).

We can then use these productivity estimates to measure productivity growth and persistence

within the dialysis industry, as reported in Table 6. Overall, average productivity for the

industry is roughly constant over the sample, with a slight drop in 2008. Again we find significant

productivity dispersion across the industry. The inter-quartile range indicates that a firm in

the 75th percentile of productivity is over 50 percent more productive than one in the 25th

percentile.

On average, productivity growth at the firm level is extensive, ranging between 4 and 7 per-

cent per year; at the same time, we observe a large degree of variation in productivity growth

within the sample. The contrast of large firm-level productivity growth with slow industry-wide

productivity growth suggests that firms enter at a lower level of productivity than their more-

established peers.19 Despite the high average growth rates, there is substantial dispersion in

growth rates across centers, suggesting that year-to-year productivity shocks have substantial

impact on centers’ output. These shocks could result from high staff turnover, changes in patient

characteristics, or other factors that affect productivity. We also find that productivity is per-

sistent within a firm across years, as shown by a correlation in log productivity of approximately

0.8 for the entire sample.

We further explore the trends in productivity across firms in Table 7. Here, we stratify

centers by age, determined by the year in which they first appear in the sample.20 The average

productivity of firms increases substantially with age, while the dispersion in productivity falls

19The decline in the number firms in 2008 is due to incomplete reporting of centers’ staffing levels rather than
actual closures, which are rare in this industry. For the purposes of estimation, we assume these data are missing at
random.

20Centers appearing in 2004 are assumed to be four or more years old.
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Table 6: (Log) Productivity, Productivity Growth, and Persistence

Year N Mean St. Dev. IQR Mean St. Dev.
Level Level Level Gain Gain Corr(ωit, ωi,t−1)

2004 3,360 1.6646 0.5350 0.5043
2005 3,563 1.6667 0.5279 0.5128 0.0682 0.3081 0.8191
2006 3,733 1.6783 0.4879 0.5151 0.0511 0.3113 0.7712
2007 3,885 1.6615 0.4979 0.5121 0.0385 0.2843 0.8130
2008 3,754 1.6177 0.5283 0.5253 0.0406 0.3020 0.7935

Total 18,295 1.6575 0.5155 0.5151 0.0492 0.3015 0.7995

Notes: Mean level is the average log productivity of all centers active in year t.
Mean gain is the average change in log productivity of centers active in years t
and t− 1.

Table 7: (Log) Productivity Growth of New Firms

Age N Mean St. Dev. IQR Mean St. Dev.
(years) Level Level Level Gain Gain Corr(ωit, ωi,t−1)

0 910 0.6858 1.0115 1.3557
1 668 1.4528 0.4673 0.6018 0.6652 0.7363 0.6947
2 447 1.5633 0.4098 0.5309 0.1012 0.1985 0.9000
3 232 1.6041 0.3973 0.4970 0.0450 0.1968 0.8812

4+ 16,038 1.7246 0.4111 0.4644 0.0147 0.2199 0.8475

Total 18,295 1.6575 0.5155 0.5151 0.0492 0.3015 0.7995

with each age group. Note, however, that the increase in productivity from age 0 to 1 is at

least partially due to centers only operating for a portion of their initial year, and the results

for productivity growth in years 1-3 indicate a fast but declining rate of productivity growth

over the initial years of a center’s existence. In contrast, the average productivity growth rate

of 1.5 percent indicates only modest growth for established firms. Overall, it appears that new

firms enter with productivity levels well below the industry average, but then experience strong

growth to “catch up” to established firms. This, coupled with the slow growth of established

firms themselves, results in relatively stagnant productivity growth for the industry as a whole.

4.3 The Determinants of Quality

The quality-quantity tradeoff estimated in Section 4.1 underscores the costs of providing high-

quality care. To understand the mechanisms that lead firms to incur such costs, we next turn
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Table 8: Linear Quality Regressions.

I II III IV

Productivity 0.2544 0.2885 0.1879 0.2278
(0.7824) (0.7761) (0.7885) (0.7823)

Capital -0.5047 -0.3013 -0.3412 -0.1584
(0.2509) (0.2469) (0.2463) (0.2425)

Labor -0.1796 -0.3313 -0.1433 -0.2987
(0.4592) (0.4551) (0.4660) (0.4627)

For Profit -1.5754 -1.5428
(0.2068) (0.2069)

Monopolist 0.6374 0.5732
(0.2053) (0.2041)

Duopolist -0.3147 -0.3601
(0.1960) (0.1928)

Triopolist -0.4300 -0.4234
(0.2322) (0.2296)

Constant 1.4519 2.5725 0.9403 2.1145
(0.6993) (0.7020) (0.6687) (0.6796)

Note: Productivity, Labor, and Capital are expressed
in logs. Dependent variable is the negative residual of
a regression of centers’ infection rate on average pa-
tient characteristics.

to the policy function for quality itself. From this, we can assess whether non-profit firms,

which may have objectives beyond maximizing profits, tend to offer higher-quality treatments.

Alternatively, we can determine whether competition leads firms to improve care.

To do so, recall that our model implies that the firm’s quality policy is a nonparametric

function of the tuple (kit, `it, xit, ωit−b). To summarize the relationship between quality and its

determinants, we regress our proxy for quality on (kit, `it, xit) and our recovered estimate of

productivity, ω̂it. While this regression suffers from specification and measurement error (both

qit and ω̂it are contaminated with measurement error), it remains indicative of centers’ quality

policies. Again, we compute standard errors using the block bootstrap, which incorporates

statistical sampling uncertainty in estimates of quality and productivity, and controls for firm-

level serial correlation.

We present several specifications of this quality regression in Table 8. Across all specifica-

tions, quality is increasing in productivity, although the relationship is not statistically signif-

icant. The lack of precision of this estimate is perhaps not surprising given that both quality
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Table 9: Partially Linear Quality Regressions.

I II III IV V

For Profit -1.5603 -1.5390 -1.5444
(0.2021) (0.2030) (0.2111)

Monopolist 0.5390 0.4824 0.4725
(0.2211) (0.2196) (0.2222)

Duopolist -0.2474 -0.2977 -0.2926
(0.1876) (0.1843) (0.1855)

Triopolist -0.4701 -0.4678 -0.4431
(0.2257) (0.2234) (0.2224)

Nonparametric Control for:
Productivity Yes Yes Yes Yes Yes
Capital Yes Yes Yes Yes Yes
Labor Yes Yes Yes Yes Yes
For-Profit Status No No No No Yes
Competition No No No Yes No

and productivity are measured with error. Moreover, attenuation bias drives our estimate of

the impact of productivity towards zero. Nonetheless, the results provide further evidence that

productivity and quality are positively correlated. The results also indicate that quality is

decreasing in firm size, measured either in terms of employment or capital stock.

Columns II and IV show that for-profit firms provide significantly worse care than non-profit

firms, with the expected infection rate more than 1.5 percentage points (over 10 percent) higher

at for-profits. This estimate is statistically significant, and provides strong evidence that firms

respond to profit-based incentives by choosing to offer a lower quality of service.

Columns III and IV allow us to examine the impact of competition on quality, where the base

category is centers with three or more competitors in their market (defined as an HSA). The

results show no clear pattern between competition and firms’ quality choices. While monopolists

tend to provide higher quality than firms in more competitive markets, duopolists and triopolists

offer weakly lower quality, which runs counter to conventional intuition. Overall, competition

does not provide a strong incentive for firms to increase their quality of service.

As a robustness check on the linear specification used in Table 8, we use a partially lin-

ear model to compute the effects of for-profit status and competition while controlling non-

parametrically for the other determinants of quality. The results, presented in Table 9, show

that our earlier conclusions are largely robust to using this more flexible specification. Again,

we see that for-profit status strongly affects quality choices, while the impact of competition is
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much weaker and non-monotonic.

5 Conclusion

By estimating center-level production functions that incorporate endogenous quality choices, we

find evidence that dialysis centers face a tradeoff between serving more patients and providing

higher quality care. This result suggests that policies aimed at increasing efficiency may inadver-

tently affect health outcomes. Although we find considerable dispersion in productivity across

firms, these results imply that incentives to reduce costs may lead to lower-quality care, not

greater efficiency. Similarly, our results on non-profit centers also provide evidence that firms

react to cost incentives by adjusting the quality of their treatments. Non-profit centers, which

have less incentive to reduce costs, provide higher-quality care to patients than their for-profit

counterparts, on average.

We find little evidence that market forces discipline centers to provide high-quality care.

While competition might be expected to provide a demand-side incentive for improving quality,

we find that firms in more-competitive markets are not more likely to offer better care than

monopolists. Disentangling the potential explanations for this result lies beyond this paper,

though the inelastic demand for dialysis treatments, the dominance of two for-profit chains, and

the weak incentives imposed by Medicare all likely contribute to this outcome.

Because dialysis treatments comprise a large — and growing — cost for Medicare, controlling

the cost of dialysis provision will likely concern policy makers for the foreseeable future. Our

work informs policy by showing that, while productivity dispersion is extensive within the

industry, cost-cutting initiatives may simply reduce the quality of care provided rather than

promote efficiency. More importantly, because dialysis resembles other healthcare settings,

these findings illustrate the challenges of introducing policies intended to minimize costs while

maintaining high standards of care.
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